Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.669
Filtrar
1.
World J Hepatol ; 16(4): 537-549, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38689749

RESUMEN

The tumor microenvironment is a complex network of cells, extracellular matrix, and signaling molecules that plays a critical role in tumor progression and metastasis. Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits. However, recent studies have shown that lymphatic endothelial cells (LECs) and blood endothelial cells (BECs) also play multifaceted roles in the tumor microenvironment beyond their structural functions, particularly in hepatocellular carcinoma (HCC). This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC, including their involvement in angiogenesis, immune modulation, lymphangiogenesis, and metastasis. By providing a detailed account of the complex interplay between LECs, BECs, and tumor cells, this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.

2.
J Oleo Sci ; 73(5): 761-772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692898

RESUMEN

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Asunto(s)
Insecticidas , Aceites Volátiles , Hojas de la Planta , Tribolium , Animales , Insecticidas/aislamiento & purificación , Insecticidas/análisis , Hojas de la Planta/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Tribolium/efectos de los fármacos , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/análisis , Repelentes de Insectos/análisis , Repelentes de Insectos/aislamiento & purificación , Repelentes de Insectos/farmacología , Temperatura
3.
J Mater Chem B ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693796

RESUMEN

Transarterial chemoembolization (TACE) is widely recognized as a non-surgical treatment approach for advanced liver cancer, combining chemotherapy with the blockage of blood vessels supplying the tumor. To enhance the efficacy of TACE and address chemotherapy resistance, there is growing interest in the development of multifunctional embolic microspheres. In this study, multifunctional PVA microspheres, which encapsulate MIT as a chemotherapeutic drug, PPY as a photothermal agent, and Fe3O4 as a chemodynamic therapy agent, were prepared successfully. The results demonstrated that the developed multifunctional PVA microspheres not only exhibit favorable drug release, photothermal therapy, and chemodynamic therapy performance, but also show a promising synergistic therapeutic effect both in vitro and in vivo. Consequently, the engineered multifunctional PVA microspheres hold tremendous promise for enhancing TACE effectiveness and have the potential to overcome limitations associated with traditional liver cancer treatments.

4.
Nat Commun ; 15(1): 3976, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729948

RESUMEN

Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages. TFPI levels are elevated in erythroblasts of human erythroblastic islands with JAK2V617F mutation and hypoxia condition. Erythroid lineage-specific knockout TFPI results in impaired erythropoiesis through decreasing ferrochelatase expression and heme biosynthesis in central macrophages. Mechanistically, the TFPI interacts with thrombomodulin to promote the downstream ERK1/2-GATA1 signaling pathway to induce heme biosynthesis in central macrophages. Furthermore, TFPI blockade impairs human erythropoiesis in vitro, and normalizes the erythroid compartment in mice with polycythemia. These results show that erythroblast-derived TFPI plays an important role in the regulation of erythropoiesis and reveal an interplay between erythroblasts and central macrophages.


Asunto(s)
Eritroblastos , Eritropoyesis , Factor de Transcripción GATA1 , Hemo , Lipoproteínas , Macrófagos , Policitemia , Policitemia/metabolismo , Policitemia/genética , Policitemia/patología , Eritroblastos/metabolismo , Hemo/metabolismo , Humanos , Animales , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Ratones , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA1/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Trombomodulina/metabolismo , Trombomodulina/genética , Ratones Noqueados , Ferroquelatasa/metabolismo , Ferroquelatasa/genética , Masculino , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Femenino
5.
Int J Biol Macromol ; : 132101, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734354

RESUMEN

Aspergillus oryzae ß-D-Galactosidase (ß-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, ß-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, ß-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-ß-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of ß-Gal were 57.9 ±â€¯0.3 % and 46.5 ±â€¯0.9 %, and the enzymatic loading was 843 ±â€¯21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-ß-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-ß-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-ß-Gal remained at 92.3 ±â€¯2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-ß-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-ß-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.

6.
Mol Med ; 30(1): 58, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720283

RESUMEN

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Mitofagia , Transducción de Señal , Calcificación Vascular , Animales , Mitofagia/efectos de los fármacos , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Calcificación Vascular/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Exenatida/farmacología , Exenatida/uso terapéutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
7.
Plants (Basel) ; 13(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732488

RESUMEN

Dioscorea alata, commonly known as "greater yam", is a vital crop in tropical and subtropical regions of the world, yet it faces significant threats from anthracnose disease, mainly caused by Colletotrichum gloeosporioides. However, exploring disease resistance genes in this species has been challenging due to the difficulty of genetic mapping resulting from the loss of the flowering trait in many varieties. The receptor-like kinase (RLK) gene family represents essential immune receptors in plants. In this study, genomic analysis revealed 467 RLK genes in D. alata. The identified RLKs were distributed unevenly across chromosomes, likely due to tandem duplication events. However, a considerable number of ancient whole-genome or segmental duplications dating back over 100 million years contributed to the diversity of RLK genes. Phylogenetic analysis unveiled at least 356 ancient RLK lineages in the common ancestor of Dioscoreaceae, which differentially inherited and expanded to form the current RLK profiles of D. alata and its relatives. The analysis of cis-regulatory elements indicated the involvement of RLK genes in diverse stress responses. Transcriptome analysis identified RLKs that were up-regulated in response to C. gloeosporioides infection, suggesting their potential role in resisting anthracnose disease. These findings provide novel insights into the evolution of RLK genes in D. alata and their potential contribution to disease resistance.

8.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189108, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723697

RESUMEN

Non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) are associated with a high mortality rate. Mutations in the V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) proto-oncogene GTPase (KRAS) are frequently observed in these cancers. Owing to its structural attributes, KRAS has traditionally been regarded as an "undruggable" target. However, recent advances have identified a novel mutational regulatory site, KRASG12C switch II, leading to the development of two KRASG12C inhibitors (adagrasib and sotorasib) that are FDA-approved. This groundbreaking discovery has revolutionized our understanding of the KRAS locus and offers treatment options for patients with NSCLC harboring KRAS mutations. Due to the presence of alternative resistance pathways, the use of KRASG12C inhibitors as a standalone treatment for patients with CRC is not considered optimal. However, the combination of KRASG12C inhibitors with other targeted drugs has demonstrated greater efficacy in CRC patients harboring KRAS mutations. Furthermore, NSCLC and CRC patients harboring KRASG12C mutations inevitably develop primary or acquired resistance to drug therapy. By gaining a comprehensive understanding of resistance mechanisms, such as secondary mutations of KRAS, mutations of downstream intermediates, co-mutations with KRAS, receptor tyrosine kinase (RTK) activation, Epithelial-Mesenchymal Transitions (EMTs), and tumor remodeling, the implementation of KRASG12C inhibitor-based combination therapy holds promise as a viable solution. Furthermore, the emergence of protein hydrolysis-targeted chimeras and molecular glue technologies has been facilitated by collaborative efforts in structural science and pharmacology. This paper aims to provide a comprehensive review of the recent advancements in various aspects related to the KRAS gene, including the KRAS signaling pathway, tumor immunity, and immune microenvironment crosstalk, as well as the latest developments in KRASG12C inhibitors and mechanisms of resistance. In addition, this study discusses the strategies used to address drug resistance in light of the crosstalk between these factors. In the coming years, there will likely be advancements in the development of more efficacious pharmaceuticals and targeted therapeutic approaches for treating NSCLC and CRC. Consequently, individuals with KRAS-mutant NSCLC may experience a prolonged response duration and improved treatment outcomes.

9.
Nat Food ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724686

RESUMEN

Salmonella enterica causes severe food-borne infections through contamination of the food supply chain. Its evolution has been associated with human activities, especially animal husbandry. Advances in intensive farming and global transportation have substantially reshaped the pig industry, but their impact on the evolution of associated zoonotic pathogens such as S. enterica remains unresolved. Here we investigated the population fluctuation, accumulation of antimicrobial resistance genes and international serovar Choleraesuis transmission of nine pig-enriched S. enterica populations comprising more than 9,000 genomes. Most changes were found to be attributable to the developments of the modern pig industry. All pig-enriched salmonellae experienced host transfers in pigs and/or population expansions over the past century, with pigs and pork having become the main sources of S. enterica transmissions to other hosts. Overall, our analysis revealed strong associations between the transmission of pig-enriched salmonellae and the global pork trade.

10.
J Cancer ; 15(10): 3024-3033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706890

RESUMEN

Background: This study aimed to investigate the safety and efficacy of preoperative targeted immunotherapy followed by surgical resection for hepatocellular carcinoma (HCC) patients with macrovascular invasion. Method: Clinical information of HCC patients with macrovascular invasion was collected from four medical centers. These patients were divided into two cohorts: the upfront surgery group (n=40) and the neoadjuvant group (n=22). Comparisons between the two groups were made with appropriate statistical methods. Results: HCC Patients with macrovascular invasion in the neoadjuvant group were associated with increased incidence of postoperative ascites (72.73% vs. 37.5%, P=0.008), but shorter postoperative hospital stay (10 days vs. 14 days, P=0.032). Furthermore, targeted immunotherapy followed by surgical resection significantly reduced the postoperative recurrence rate at both 3 months and 1 year (9% versus 28.9%, 32.1% versus 67.9%, respectively; P=0.018), but increased the postoperative nononcologic mortality rate within 1 year (20.1% vs. 2.8%; P= 0.036). Conclusion: For HCC patients with macrovascular invasion, preoperative targeted immunotherapy significantly decreased the postoperative tumor recurrence rate while maintaining relative safety, but such a treatment may also result in chronic liver damage and increased risk of nononcologic mortality.

11.
Heliyon ; 10(9): e30190, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707361

RESUMEN

Background: The severity of white matter hyperintensities (WMH) has been shown to be an independent predictor of poor stroke outcome, but the effect of sex on this correlation has not been investigated further. Therefore, the purpose of our study was to assess whether there was a sex difference between the severity of WMH and poor stroke outcome. Methods: This retrospective study included 449 patients with acute ischemic stroke (AIS) who received intravenous thrombolysis. WMH severity was graded based on the Fazekas scale. The association between WMH severity and stroke outcome was explored through multivariable regression analyses in men and women. Results: Among women, when dividing WMH severity into tertiles, T3 (Fazekas scale >3) had a 5.334 times higher risk for unfavorable outcomes than T1 (Fazekas scale <2) (p-trend = 0.026) in the adjusted model. In addition, moderate-severe WMH (Fazekas scale 3-6) had a 3.391 (1.151-9.991) times higher risk than none-mild WMH (Fazekas scale 0-2) (p = 0.027). Conclusions: The risk of unfavorable outcomes increased proportionally with the enlargement of the WMH severity in females, suggesting the sex-specific value of the WMH severity in optimizing the risk stratification of stroke.

12.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701420

RESUMEN

The relationship between genotype and fitness is fundamental to evolution, but quantitatively mapping genotypes to fitness has remained challenging. We propose the Phenotypic-Embedding theorem (P-E theorem) that bridges genotype-phenotype through an encoder-decoder deep learning framework. Inspired by this, we proposed a more general first principle for correlating genotype-phenotype, and the P-E theorem provides a computable basis for the application of first principle. As an application example of the P-E theorem, we developed the Co-attention based Transformer model to bridge Genotype and Fitness model, a Transformer-based pre-train foundation model with downstream supervised fine-tuning that can accurately simulate the neutral evolution of viruses and predict immune escape mutations. Accordingly, following the calculation path of the P-E theorem, we accurately obtained the basic reproduction number (${R}_0$) of SARS-CoV-2 from first principles, quantitatively linked immune escape to viral fitness and plotted the genotype-fitness landscape. The theoretical system we established provides a general and interpretable method to construct genotype-phenotype landscapes, providing a new paradigm for studying theoretical and computational biology.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Genotipo , Fenotipo , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Humanos , COVID-19/virología , COVID-19/genética , COVID-19/inmunología , Biología Computacional/métodos , Algoritmos , Aptitud Genética
13.
Eur J Med Chem ; 272: 116463, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38704944

RESUMEN

Butyrylcholinesterase (BChE) has attracted wide interest as a promising target in Alzheimer's disease (AD) investigation. BChE is considered to play a compensable role of hydrolyzing acetylcholine (ACh), and its positive correlation with ß-amyloid (Aß) deposition also promotes disease progression. Herein, we uncovered a selective potent BChE inhibitor S21-1011 (eqBChE IC50 = 0.059 ± 0.006 µM, hBChE IC50 = 0.162 ± 0.069 µM), which presented satisfactory druggability and therapeutic efficacy in AD models. In pharmacokinetics (PK) studies, S21-1011 showed excellent blood-brain barrier (BBB) permeability, metabolism stability and high oral-bioavailability. In pharmacodynamic (PD) studies, it protected neural cells from toxicity and inflammation stimulation in vitro. Besides, it also exerted anti-inflammatory effect and alleviated cognitive impairment in mice models induced by lipopolysaccharides (LPS) and Aß. Generally, this compound has been confirmed to function as a neuroprotector and cognition improver in various AD pathology-like models. Therefore, S21-1011, a novel potent BChE inhibitor, could be considered as a potential anti-AD candidate worthy of more profound investigation.

14.
Angew Chem Int Ed Engl ; : e202401850, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706222

RESUMEN

Seeking high-performance photoresist is an important item for semiconductor industry due to the continuous miniaturization and intelligentization of integrated circuits. Polymer resin containing carbonate group has many desirable properties, such as high transmittance, acid sensitivity and chemical formulation, thus serving as potential photoresist material. In this work, a series of aqueous developable CO2-sourced polycarbonate (CO2-PC) were produced via alternating copolymerization of CO2 and epoxides bearing acid-cleavable cyclic acetal groups in the presence of tetranuclear organoborane catalyst. The produced CO2-PCs were investigated as chemical amplification resists in deep ultraviolet (DUV) lithography. Under the catalysis of photoacid, the acetal (ketal) groups in CO2-PC were hydrolysed into two equivalents of hydroxyl groups, which changes the exposed areas from hydrophobicity to hydrophilicity, thus enabling the exposed regions to be developed in water. Through normalized remaining thickness analysis, the optimal CO2-derived resist achieved a remarkable sensitivity of 1.9 mJ/cm2, a contrast of 7.9, a favorable resolution (750 nm, half pitch), and etching resistance (38% higher than poly(tert-butyl acrylate)). Such performances outperforming commercial KrF and ArF chemical amplification resists (i.e., polyhydroxystyrene-derived and polymethacrylate-based resists), which endows broad application prospects in the field of DUV (248 nm and 193 nm) and extreme ultraviolet (EUV) lithography and nanomanufacturing.

15.
Phytochemistry ; 223: 114119, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705266

RESUMEN

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.

16.
Histol Histopathol ; : 18736, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38576381

RESUMEN

Non-SMC Condensin II Complex Subunit D3 (NCAPD3) has been linked with the genesis and progression of multiple human cancers. Nevertheless, the scientific value and molecular process of NCAPD3 in glioma remain unclear. We explored the level of NCAPD3 expression in pan-cancer by multiple online databases. And we focused on the level and prognostic value of NCAPD3 expression in glioma by immunohistochemistry (IHC) and survival analysis. Meanwhile, we verified the relationship between NCAPD3, biological function and immune infiltration in glioma by Linkedomics and SangerBox databases. The expression of NCAPD3 was increased in a variety of cancers, including glioma. Its high expression was strongly related to WHO grade (P=0.002) and programmed cell death ligand 1 (PD-L1) expression of glioma (P=0.001). Patients with a high level of NCAPD3 expression had a lower overall survival (OS) in glioma than patients with a low level of NCAPD3 expression. Multivariate statistical analyses showed NCAPD3 expression (P=0.040), WHO grade (P<0.001), 1p/19q codeletion (P<0.001), recurrence (P<0.001), age (P=0.023), and chemotherapy status (P=0.001) were meaningful independent prognostic factors in patients with glioma. Furthermore, bioinformatics analysis proved that NCAPD3 has been linked to immune infiltration in glioma. High level of NCAPD3 expression may serve as a promising prognostic biomarker and correlate with dendritic cell infiltration, representing a potential immunotherapy target in glioma.

17.
Medicine (Baltimore) ; 103(15): e37411, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608087

RESUMEN

BACKGROUND: Colonoscopy is a commonly performed gastroenterological procedure in patients associated with anxiety and pain. Various approaches have been used to provide sedation and analgesia during colonoscopy, including patient-controlled analgesia and sedation (PCAS). This study aims to evaluate the feasibility and efficiency of PCAS administered with propofol and remifentanil for colonoscopy. METHODS: This randomized controlled trial was performed in an authorized and approved endoscopy center. A total of 80 outpatients were recruited for the colonoscopy studies. Patients were randomly allocated into PCAS and total intravenous anesthesia (TIVA) groups. In the PCAS group, the dose of 0.1 ml/kg/min of the mixture was injected after an initial bolus of 3 ml mixture (1 ml containing 3 mg of propofol and 10 µg of remifentanil). Each 1 ml of bolus was delivered with a lockout time of 1 min. In the TIVA group, patients were administered fentanyl 1 µg/kg, midazolam 0.02 mg/kg, and propofol (dosage titrated). Cardiorespiratory parameters and auditory evoked response index were continuously monitored during the procedure. The recovery from anesthesia was assessed using the Aldrete scale and the Observer's Assessment of Alertness/Sedation Scale. The Visual Analogue Scale was used to assess the satisfaction of patients and endoscopists. RESULTS: No statistical differences were observed in the Visual Analogue Scale scores of the patients (9.58 vs 9.50) and the endoscopist (9.43 vs 9.30). A significant decline in the mean arterial blood pressure, heart rate, and auditory evoked response index parameters was recorded in the TIVA group (P < 0.05). The recovery time was significantly shorter in the PCAS group than in the TIVA group (P = 0.00). CONCLUSION: The combination of remifentanil and propofol could provide sufficient analgesia, better hemodynamic stability, lighter sedation, and faster recovery in the PCAS group of patients compared with the TIVA group.


Asunto(s)
Agnosia , Propofol , Humanos , Remifentanilo , Midazolam , Analgesia Controlada por el Paciente , Fentanilo , Anestesia Intravenosa , Anestesia General , Colonoscopía , Dolor
18.
Anal Chem ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662943

RESUMEN

Spectrum-structure correlation is playing an increasingly crucial role in spectral analysis and has undergone significant development in recent decades. With the advancement of spectrometers, the high-throughput detection triggers the explosive growth of spectral data, and the research extension from small molecules to biomolecules accompanies massive chemical space. Facing the evolving landscape of spectrum-structure correlation, conventional chemometrics becomes ill-equipped, and deep learning assisted chemometrics rapidly emerges as a flourishing approach with superior ability of extracting latent features and making precise predictions. In this review, the molecular and spectral representations and fundamental knowledge of deep learning are first introduced. We then summarize the development of how deep learning assist to establish the correlation between spectrum and molecular structure in the recent 5 years, by empowering spectral prediction (i.e., forward structure-spectrum correlation) and further enabling library matching and de novo molecular generation (i.e., inverse spectrum-structure correlation). Finally, we highlight the most important open issues persisted with corresponding potential solutions. With the fast development of deep learning, it is expected to see ultimate solution of establishing spectrum-structure correlation soon, which would trigger substantial development of various disciplines.

19.
Mol Pharm ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666508

RESUMEN

Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.

20.
Mil Med Res ; 11(1): 22, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622688

RESUMEN

BACKGROUND: Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS: The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS: Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS: This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Animales , Ratones , Diclorodifenil Dicloroetileno , Hepatocitos , Interferón-alfa , ARN , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA